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LETTER TO THE EDITOR 

Gauge invariance and the vortex glass 

Marek Cieplakts, Jayanth R Banavart and Ani1 KhuranaS 
t Depanment of Physics and Materials Research Laboratory, The Pennsylvania State 
University, University Park, PA 16802, USA 
t Department of Physics, University of Amsterdam, The Netherlands 

Received 26 November 1990 

Abstract. A model of disordered arrays of weakly coupled superconducting grains and 
a related randomgauge model are discussed. Evidence, from numerical studies of the zero 
temperature scaling behaviour of the stiffness, for a non-zero temperature spin-glass phase 
in the randomgauge model and in the strong magnetic field limit of the disordered arrays 
is presented. The universality class of a frustrated system may depend on whether the 
interactions have local gauge invariance. 

One of the explanations of the unusual magnetic properties [ 11 of the high-Tc supercon- 
ductors in the mixed state postulates [Z ]  is that the magnetic flux lines in that state 
are frozen into a random array and not into a periodic Abrikosov lattice. I n  such a 
state, called the vortex glass, the spatial average of the square modulus of the Cooper- 
pair wavefunction is expected to be non-zero even though the average of the wavefunc- 
tion itself is zero. Does such a state exist a t  non-zero temperatures in three dimensions? 
Resistivity data for films of YBa,Cu,O, seem to suggest that it does [3]. 

The possibility of glass-like behaviour in the mixed state of a superconductor arises 
because the phase of the complex order parameter changes discontinuously across 
structural defects. The Josephson effect, however, causes coupling between nearby 
regions (‘grains’) of uniform phase. When the magnetic field H = 0; the coupling 
promotes phase coherence between grains. If the phase is represented by a two- 
component, or  XU, spin, the coupling between spins representing nearby grains is 
ferromagnetic. In the presence of H, however, the coupling may not align the phases 
at two points because the line integral of the vector potential, A, between the points 
also contributes to the phase difference between them. 

Using the standard expression for the interaction energy of a Josephson junction 
[4], this physics is captured by a random-grain model [SI described by the XY 
Hamiltonian 

N 

(5) 
H = - J,  COS(+; - bj - A,). (1) 

Here, (ij) denotes a summation over neighbouring grains located nn a topo!ngica!!y 
disordered lattice and the gauge factors A, are given by 

AV= Zn/a0 1; A d l  (2) 
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where Qo is the flux quantum for a Cooper pair. The Josephson coupling constants J, 
are approximated by a single constant J, chosen to be 1 for simplicity. We shall choose 
the symmetric gauge, in which case 

(3) 
The question regarding the existence of the vortex glass now becomes: does the 

spin model defined by the Hamiltonian ( I )  have a finite-T spin-glass phase in D =3?  
Two recent studies of the model offer conflicting answers. First, Huse and Seung [6] 
carried out a Monte Cario simuiation of a simpiified version of modei ( I  j in which 
the gauge factors A, are taken to be random numbers satisfying A,=-A, and 
distributed uniformly between 0 and 27r. The simulation suggested that the simplified 
model, which we shall henceforth call the random-gauge model, might have an 
Ising-spin-glass transition. Second, an &-expansion about D = 6 on a cubic field theory 
[7] for a gauge glass was interpreted [E] to imply a lower critical dimensionality greater 
ihan 3. 

The Huse-Seung result is very interesting, because critical phenomena in spin 
systems usually depend on spin and space dimensionalities and the random-bond XY 
model-which may be recovered from the random-gauge model by choosing the A, 
to be randomly 0 or ?r-is known not to have a finite- T spin-glass phase in D = 3 [9]. 
This makes it imperative to study for the random-gauge model quantities such as the 

Ising spin glass [9-121. Such studies must be carried out directly in D = 3, rather than 
in an E or any other expansion about the mean-field limit, because the relevance of 
those expansions for the replica symmetric spin glass has been questioned recently [ 131. 

In this letter we report results of numerical studies of the scaling stiffness of three 
models: the random-grain model, ( I ) ,  for several values of H, the random-gauge and 

similar to that of the random-grain model at high fields: In both cases, we find evidence 
for a spin-glass phase. But at intermediate fields, the random-grain model shows a 
complex behaviour. 

The basic quantity of interest in the T=O scaling theory is a scale-dependent 
coupling energy, S E (  L), which is determined by studying the sensitivity of ground-state 
energies of b!ocks of !ength L to changes In b o ~ ~ d ~ r y  cozdltion:. We considered 3~ 

blocks with periodic boundary conditions applied in two directions and either periodic 
or antiperiodic boundary conditions in the third direction. For each sample we deter- 
mined the energy difference A E  between ground-state energies with periodic and 
antiperiodic boundary conditions. We defined S E ( L )  as (IAEIX, where (. . .), is the 
average over samples. For unfrustrated systems SE coincides with the absolute value 

average such systems d o  not prefer either periodic or antiperiodic boundary conditions. 

A(, = 7r/ZQoH[ (x; - X, ) (xi 4 X, )]. 

aiifness thai iuine: io 'oe useful in unraveiiing ihe iow- T phase uf ihe 

+hn . -nAnm h--A - - A n l r t  1x1. C - A  e h l +  r h n  hnho..: -..- -F r h n  - o n A - -  In.." ~ - -Ant :- ,.,r LP..""...-"".I" I I IV"C.a,. 7 . C  l l l l "  LIIPLL L l l r  "CII(L",""I "1 lllr 1 ( L ' L 1 " " " 1 - ~ ~ " & ~  lll""Cl 1) 

of !he mea!! n=(ZE!<, bl?! for peyfect!y frl?s!ra!ed systems r sho.!d vanish since on 

S E ( L ) =  YLU i-=o (4) 

If the ground state is frustrated but ordered, one expects 

as L tends to infinity. For systems below the lower critical dimensionality, 6' is negative 
and a phase transition occurs at T = 0. On the other hand, for systems above the lower 
criticai dimensionaiity 0 is positive and there is a non-zero Tc. 

t One of the earliest studies of the effect of impurities on the Abrikorov lattice used what may now be called 
a randam-critical-temperature Landau-Ginrburg model. Although Larkin [14] argued in thc cantext of that 
model that the Abrikasov lattice might be destroyed, studies of such models far random magnets suggest 
that they may not have a spin glass phase; see e.g. Sherringtan [14]. 
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We considered cubic samples with L = 3,4 and S. In the case of the random-grain 
model the grains were first arranged on a cubic lattice of lattice constant, a = 1, and 
then were displaced to random positions on surfaces of spheres of radii 0.2 centred 
on the nodes of the lattice. This is a 3~ generalization of the planar disordered Josephson 
array studied by Morgenstern et a/  [IS]. In  our simulation, the magnetic field pointed 
along one of the lattice axes and its magnitude was measured in units of 2@,/na2. 

The ground-state energies were found using the following procedure. Starting with 
a random spin configuration the system was quenched to f= 0; a sequential optimal 
alignment of the spins was carried out until the total energy changed by less than 
0.01%. A large number, K, of starting configurations were considered, with K chosen 
so that A E  asymptoted to a constant value for a given L and H. We found that this 
procedure with a large K was more efficient in finding the ground-state energy than 
the slow Monte Carlo cooling or simulated annealing. We studied 100-200 samples 
except for the case of the L = S  random-grain model with H =6. The statistics in the 
case are based on SO samples, because we had to take K as large as 2 [16]. 

Figure 1 shows the behaviour of SE as a function of L for the random-bond model, 
the random-gauge model, and the random-grain model for H =6. The error bars were 
obtained by estimating the effects of finite statistics. In the case of the random-bond 
model SE decreases with increasing L with 8=-1, in agreement with [9]. 

4 - - .  I . 
'-4. '. 
I 

1.2 1.4 1 6  
I" L 

Figure 1. Dependence of S E ( L )  on L for three models: The random-bond model (open 
circles), the random-gauge model (black squares), and the random-grain model for h = 6.0 
(black circles). The full curves have B slope of 0.3 and the broken curve - I .  All lines are 
guides to the eye. 

The random-gauge model, by contrast, shows different behaviour: SE increases 
with increasing L, suggesting a non-zero T,.  Our data suggest @ to he of order 0.3, 
which exceeds the value of 0.19 obtained for king spin glasses [8,9] using system 
sizes comparable to ours. The two models may thus be in different universality classes. 
It should he noted that the experiments [3] find U = 1.7 from measurements of the 
nonlinear I - V  curves, compared with U =  1.12 found for king spin glasses [8]. 

We found that the behaviour of the random-grain model has a complicated depen- 
dence on the magnetic field. For weak fields H, there are even-odd effects reminiscent 



L148 Letter to the Editor 

of antiferromagnets. The system seems to be completely unfrustrated for H less than 
0.2: r has the same magnitude as 6 E  (for L up to 6 ) ,  so that the system is like a 
disordered ferromagnet or antiferromagnet [16]. The behaviour simplifies in the large 
field limit. It becomes possible to extract a value for the exponent 0 with reasonable 
confidence at H = 6 .  This value, which stays the same for the highest fields studied, 
H = 20, is consistent with that found for the random-gauge model, as may be seen in  
figure 1. 

Soon after the discovery of high- T, superconductivity, the random-grain model 
was invoked to understand irreversibiliy effects in the magnetic measurements on those 
superconductors [15]. We have also studied such effects using a local mean-field theory 
for the magnetization and'exploring the difference between field-cooled and zero-field- 
cooled values of the magnetization. We find, in agreement with earlier Monte Carlo 
simulations [17], that such effects set in for H on the order of 0.03, that is, at field 
values for which the model is not frustrated. This suggests that at onset, for fields just 
above the lower critical field, these effects may arise from some slow dynamical 
processes such as flux creep [18]. But the model must be explored more carefully, for 
small and intermediate fields, before anything definitive can be said on this subtle point. 

Retrospectively, it is not surprising that the random-bond and random-gauge models 
have different behaviours because the models are fundamentally different even though 
both are systems of XY spins. Like thhe random-bond lsing spin glass the random- 
gauge model has a local gauge invariancet. This invariance means that the energy of 
any equilibrium configuration of the gauge model will not change if the spins are 
rotated by arbitrary amounts as long as the random gauge factors between nearest- 
neighbour spin pairs are also suitably adjusted. The random-bond model, by contrast, 
lacks this local invariance. The random-bond model only has an king-like gauge 
invariance. However, since the randon-bond model and the lsing spin glass have 
different behaviour, it is clear that the symmetry of the local gauge invariance alone 
does not determine the universality class. The fact that the random-grain model does 
not order for a range of intermediate fields, for which the gauge invariance is not 
exact, further underscores the significance of the invariance for the vortex glass. 

We conjecture that a general principle may underlie the different behaviours we 
obtain for the random-bond and random-gauge models. The principle may state, for 
example, that the critical dimensionalities of spin-glass models depend not only on 
the spin dimensionality but also on whether the interactions have local gauge invariance. 
It should not cause surprise, therefore, if a model even of Heisenberg spins had an 
ordered spin-glass phase in D = 3 if the competing interactions between the Heisenberg 
spins bad the property of gauge invariance outlined above. A random-gauge model 
for Heisenberg spins can be written in terms of Euler angles. The study of such a 
model will be interesting for at least two reasons. First, what happens to the Higgs 
phase when non-Abelian gauge fields are not dynamical but are quenched$? Second, 
such a model may be relevant to systems that have three-dimensional order parameters, 
such as nematic liquid crystals, when they are disordered. 

The ultimate test of the relevance of the random gauge model to the vortex glass 
will be whether there is quantitative agreement between a measurable exponent and 

t Random gauge models far disordered magnets were introduced by H e m  [19]. The random-gauge model 
may be a discrete lattice version of the U ( I )  invariant model discussed by him. 
%The phase diagram of a theory of Higgs field coupled to dynamical gauge fields is discussed by Fiadkin 
and Shenker [20]. 
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its analytic estimation. Such analytic studies are underway and the results will be 
reported elsewhere. 

We are indebted to P Cieplak, J V Jose, A Majhofer and W L McLean for useful 
discussions. The work at Penn State was supported by a grant from the Donors of the 
Petroleum Research Fund administered by the American Chemical Society and the 
NSF through the United States-Poland Cooperative Science Program. We gratefully 
acknowledge the generous support of the Computer Center of the Pennsylvania State 
University. MC was supported by the Polish Projects CPBP.01.09 and CPBP.01.03. 

Note added. We have learned from Dr Tokuyasu that scaling studies similar to our own are being carried 
out on the random gauge model in D = 2  and 3 by A P Young, M P A  Fisher and T A Tokuyasu. 
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